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Variables in MATLAB
• Just like other programming 

languages, you can define 
variables in which to store 
values.

• All variables can by default 
hold matrices with scalar or 
complex numbers in them.

• You can define as many 
variables as your PC memory 
can hold.

• Values in variables can be 
inspected, used and changed

• Variable names are case-
sensitive, and show up in the 
Workspace.

>> A = 5 

A = 

     5 

 

>> d = 7 

d = 

     7 

 

>> LightSpeed = 3e8 

LightSpeed = 

   300000000 
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Variables

• You can change the 
value in the variable by 
over-writing it with a 
new value

• Remember that variables 
are case-sensitive (easy 
to make a mistake)

• Always left-to right
>> variable = expression

>> a = 7 

a = 

     7 

 

>> b = 12 

b = 

    12 

 

>> b = 14 

b = 

    14 

 

>> B = 88 

B = 

    88 

 

>> c = a + b 

c = 

    21 

 

>> c = a / b 

c = 

    0.5000 
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Exercise

• Develop MATLAB 
code to find Cylinder 
volume and surface 
area.

• Assume radius of 5 m 
and height of 13 m.

� = ��
2
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� = 2��2 + 2��ℎ = 2���� + ℎ� 
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Solution

5

>> r = 5 

r = 

     5 

 

>> h = 13 

h = 

    13 

 

>> Volume = pi * r^2 * h 

Volume = 

  1.0210e+003 

 

>> Area = 2 * pi * r * (r + h) 

Area = 

  565.4867 
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Useful MATLAB commands
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Vectors and Matrices (Arrays)

• So far we used MATLAB variables to 
store a single value.

• We can also create MATLAB arrays that 
hold multiple values
– List of values (1D array) called Vector

– Table of values (2D array) called Matrix

• Vectors and matrices are used 
extensively when solving engineering 
and science problems.
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Row Vector

• Row vectors are special cases of matrices.

• This is a 7-element row vector (1 × 7 matrix).

• Defined by enclosing numbers within square 
brackets [ ] and separating them by , or a space.

>> C = [10, 11, 13, 12, 19, 16, 17] 

 

C = 

    10    11    13    12    19    16    17 

 

 

>> C = [10 11 13 12 19 16 17] 

 

C = 

    10    11    13    12    19    16    17 
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Column Vector

• Column vectors are special cases of matrices.

• This is a 7-element column vector (7 × 1 matrix).

• Defined by enclosing numbers within [ ] and 
separating them by semicolon ;

>> R = [10; 11; 13; 12; 19; 16; 17] 

 

R = 

    10 

    11 

    13 

    12 

    19 

    16 

    17 

 

 

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix
• This is a 3 × 4-element matrix.
• It has 3 rows and 4 columns (dimension 3 × 4).
• Spaces or commas separate elements in different columns, 

whereas semicolons separate elements in different rows.
• A dimension n × n matrix is called square matrix.

>> M = [1, 3, 2, 9; 6, 7, 8, 1; 7, 4, 6, 0] 

M = 

     1     3     2     9 

     6     7     8     1 

     7     4     6     0 

 

 

>> M = [1 3 2 9; 6 7 8 1; 7 4 6 0] 

M = 

     1     3     2     9 

     6     7     8     1 

     7     4     6     0 
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Transpose of a Matrix

• The transpose operation interchanges the rows and 
columns of a matrix.

• For an m × n matrix A the new matrix AT (read 
“ A transpose” ) is an n × m matrix.

• In MATLAB, the A’ command is used for transpose.
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Exercise

>> A = [1 2 3; 5 6 7] 

A = 

     1     2     3 

     5     6     7 

 

>> A' 

ans = 

     1     5 

     2     6 

     3     7 

 

>> B = [5 6 7 8] 

B = 

     5     6     7     8 

 

>> B' 

ans = 

     5 

     6 

     7 

     8 

 

• What happens to a row vector when transposed?

• What happens to a column vector when transposed?

12



1/31/2015

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Useful Functions
length(A) Returns either the number of elements of A if A 

is a vector or the largest value of m or n if A is an 
m × n  matrix 

size(A) Returns a row vector [m n] containing the 
sizes of the m × n matrix A. 

max(A) For vectors, returns the largest element in A.  
For matrices, returns a row vector containing the 
maximum element from each column.  

If any of the elements are complex, max(A) 
returns the elements that have the largest 
magnitudes. 

[v,k] = max(A) Similar to max(A) but stores the maximum 
values in the row vector v and their indices in 
the row vector k. 

min(A) 

and 
[v,k] = min(A) 

Like max but returns minimum values. 
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More Useful Functions

sort(A) Sorts each column of the array A in ascending 
order and returns an array the same size as A. 

sort(A,DIM,MODE) Sort with two optional parameters: 
  DIM selects a dimension along which to sort. 
  MODE is sort direction ('ascend' or 'descend'). 

sum(A)  Sums the elements in each column of the array A 
and returns a row vector containing the sums. 

sum(A,DIM) Sums along the dimension DIM. 
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Exercises
>> M = [1 6 4; 3 7 2] 

 

>> size(M) 

 

>> length(M) 

 

>> max(M) 

 

>> [a,b] = max(M) 

 

>> sort(M) 

 

>> sort(M, 1, 'descend') 

 

>> sum(M) 

 

>> sum(M, 2) 

 

 

>> X = [4 9 2 5] 

X = 

     4     9     2     5 

 

>> length(X) 

ans = 

     4 

 

>> size(X) 

ans = 

     1     4 

 

>> min(X) 

ans = 

     2 
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Solution
>> M = [1 6 4; 3 7 2] 

M = 

     1     6     4 

     3     7     2 

 

>> size(M) 

ans = 

     2     3 

 

>> length(M) 

ans = 

     3 

 

>> max(M) 

ans = 

     3     7     4 

 

>> [a,b] = max(M) 

a = 

     3     7     4 

b = 

     2     2     1 

 

>> sort(M) 

ans = 

     1     6     2 

     3     7     4 

 

>> sort(M, 1, 'descend') 

ans = 

     3     7     4 

     1     6     2 

 

>> sum(M) 

ans = 

     4    13     6 

 

>> sum(M, 2) 

ans = 

    11 

    12 
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The Variable Editor [from 
Workspace or openvar('A')]

17
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Creating Big Matrices

• What if you want to create a Matrix that 
contains 1000 element (or more)?

• Writing each element by hand is difficult, 
time-consuming and error-prone.

• MATLAB allows simple ways to quickly 
create matrices, such as:

• Using the colon : operator (very popular).

• Using linspace() and logspace() 
functions (less popular, but useful).

18
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Using the colon operator

• MATLAB command X = J:D:K creates vector 
X = [J, J+D, ..., J+m*D] where m = fix((K-J)/D).

• In other words, it creates a vector X of values 
starting at J, ending with  K, and with spacing D. 

• Notice that the last element is K if K - J is an 
integer multiple of D. If not, the last value is less 
than J. 

• MATLAB command J:K is the same as J:1:K.
• Note:

– J:K is empty if J > K.
– J:D:K is empty if D == 0, if D > 0 and J > K, or if 

D < 0 and J < K.

19
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Example 1

>> x = 0:2:8 

x = 

     0     2     4     6     8 

 

>> x = 0:2:7  

x = 

     0     2     4     6 

 

>> x = 4:7 

x = 

     4     5     6     7 

 

>> x = 7:2 

x = 

   Empty matrix: 1-by-0 
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Example 2

>> x = 7:-1:2 

x = 

     7     6     5     4     3     2 

 

>> x = 5:0.1:5.9 

x = 

  Columns 1 through 5 

    5.0000    5.1000    5.2000    5.3000    5.4000 

 

  Columns 6 through 10 

    5.5000    5.6000    5.7000    5.8000    5.9000 

 

>> y = 5:0.1:5.9; % what happened here?! 

>> 

>> % now create a ‘column’ vector from 1 to 10 using : 
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Alternatives to colon

• linspace command creates a linearly spaced row 
vector, but instead you specify the number of 
values rather than the increment. 

• The syntax is linspace(x1,x2,n), where x1 and 
x2 are the lower and upper limits and n is the 
number of points.

• If n is omitted, the number of points defaults to 100.
• logspace command creates an array of 

logarithmically spaced elements.
• Its syntax is logspace(a,b,n), where n is the 

number of points between 10a and 10b.  
• If n is omitted, the number of points defaults to 50.

22
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Exercise

>> x = linspace(5,8,3) 

 

x = 

 

    5.0000    6.5000    8.0000 

 

>> x = logspace(-1,1,4)  

 

x = 

 

    0.1000    0.4642    2.1544   10.0000 

 

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Special: ones, zeros, rand
>> a = ones(2,4) 

a = 

     1     1     1     1 

     1     1     1     1 

 

>> b = zeros(4, 3) % null matrix 

b = 

     0     0     0 

     0     0     0 

     0     0     0 

     0     0     0 

 

>> c = rand(2, 4) 

c = 

    0.8147    0.1270    0.6324    0.2785 

    0.9058    0.9134    0.0975    0.5469 

 

% random values drawn from the standard  

% uniform distribution on the open  

% interval(0,1) 

 24
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Null and 
Identity 
Matrix

>> eye(4) % identity matrix 

ans = 

     1     0     0     0 

     0     1     0     0 

     0     0     1     0 

     0     0     0     1 

 

>> A = [1 2 3; 4 5 6; 7 8 9] 

A = 

     1     2     3 

     4     5     6 

     7     8     9 

 

>> I = eye(3) 

I = 

     1     0     0 

     0     1     0 

     0     0     1 

 

>> A*I 

ans = 

     1     2     3 

     4     5     6 

     7     8     9 

 25
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Matrix Determinant & Inverse

>> A = [1 2 3; 2 3 1; 3 2 1] 

A = 

     1     2     3 

     2     3     1 

     3     2     1 

 

>> det(A) % determinant 

ans = 

   -12 

 

>> inv(A) % inverse 

ans = 

   -0.0833   -0.3333    0.5833 

   -0.0833    0.6667   -0.4167 

    0.4167   -0.3333    0.0833 

 

>> A^-1 

ans = 

   -0.0833   -0.3333    0.5833 

   -0.0833    0.6667   -0.4167 

    0.4167   -0.3333    0.0833 
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Accessing Matrix Elements

>> C = [10, 11, 13, 12, 19, 16, 17] 

 

C = 

    10    11    13    12    19    16    17 

 

>> C(4) 

ans = 

    12 

 

>> C(1,4) 

ans = 

    12 

 

>> C(20) 

??? Index exceeds matrix dimensions. 
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Notes

• Use () not [] to access matrix elements. 

• The row and column indices are NOT zero-
based, like in C/C++.

• The first is row number, followed by the 
column number.

• For matrices and vectors, you can use one of 
three indexing methods: matrix row and 
column indexing; linear indexing; and logical 
indexing.

• You can also use ranges (shown later).

28
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Accessing Matrix Elements
>> M = [1, 3, 2, 9; 6, 7, 8, 1; 7, 4, 6, 0] 

M = 

     1     3     2     9 

     6     7     8     1 

     7     4     6     0 

 

>> M(2, 3) 

ans = 

     8 

 

>> M(3, 1) 

ans = 

     7 

 

>> M(0, 1) 

??? Subscript indices must either be real 

positive integers or logicals. 

 

>> M(9) 

ans = 

     6 

 29
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Matrix Linear Indexing

30



1/31/2015

16

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Indexing: Sub-matrix

• v(2:5) represents the second through fifth elements
– i.e., v(2), v(3), v(4), v(5). 

• v(2:end) represents the second till last element of v. 
• v(:) represents all the row or column elements of vector v.

• A(:,3) denotes all elements in the third column of matrix A.
• A(:,2:5) denotes all elements in the second through fifth 

columns of A.
• A(2:3,1:3) denotes all elements in the second and third 

rows that are also in the first through third columns.
• A(end,:) all elements of the last row in A.
• A(:,end) all elements of the last column in A.
• v = A(:) creates a vector v consisting of all the columns of A 

stacked from first to last.

31
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Exercise
>> v = 10:10:70 

v = 

    10    20    30    40    50    60    70 

 

>> v(2:5) 

ans = 

    20    30    40    50 

 

>> v(2:end) 

ans = 

    20    30    40    50    60    70 

 

>> v(:) 

ans = 

    10 

    20 

    30 

    40 

    50 

    60 

    70 

 

32



1/31/2015

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise
>> A = [4 10 1 6 2; 8 1.2 9 4 25; 7.2 5 7 1 

11; 0 0.5 4 5 56; 23 83 13 0 10] 

 

A = 

   4.0000  10.0000  1.0000  6.0000   2.0000 

   8.0000   1.2000  9.0000  4.0000  25.0000 

   7.2000   5.0000  7.0000  1.0000  11.0000 

        0   0.5000  4.0000  5.0000  56.0000 

  23.0000  83.0000 13.0000       0   0.0000 

 

>> A(:,3) 

ans = 

     1 

     9 

     7 

     4 

    13 

 

>> A(:,2:5) 

ans = 

   10.0000    1.0000    6.0000    2.0000 

    1.2000    9.0000    4.0000   25.0000 

    5.0000    7.0000    1.0000   11.0000 

    0.5000    4.0000    5.0000   56.0000 

   83.0000   13.0000         0   10.0000 

 

>> A(2:3,1:3) 

ans = 

 

    8.0000    1.2000    9.0000 

    7.2000    5.0000    7.0000 

 

>> A(end,:) 

ans = 

    23    83    13     0    10 

 

>> A(:,end) 

ans = 

     2 

    25 

    11 

    56 

    10 

 

>> v = A(:) 

v = 

    4.0000 

    8.0000 

    7.2000 

         0 

   23.0000 

   10.0000 

    1.2000 

    5.0000 

    0.5000 

   83.0000 

    1.0000 

    9.0000 

    7.0000 

    4.0000 

   13.0000 

    6.0000 

    4.0000 

    1.0000 

    5.0000 

         0 

    2.0000 

   25.0000 

   11.0000 

   56.0000 

   10.0000 

 33
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Linear indexing: Advanced

>> A = 5:5:50 

A = 

  5  10  15  20  25  30  35  40  45  50 

 

>> A([1 3 6 10]) 

ans = 

     5    15    30    50 

 

>> A([1 3 6 10]') 

ans = 

     5    15    30    50 

 

>> A([1 3 6; 7 9 10]) 

ans = 

     5    15    30 

    35    45    50 

% indexing into a vector with a nonvector, 

the shape of the indices is honored 
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Linear indexing is useful: find
>> A = [1 2 3; 4 5 6; 7 8 9] 

A = 

     1     2     3 

     4     5     6 

     7     8     9 

 

>> B = find(A > 5) % returns linear index 

B = 

     3 

     6 

     8 

     9 

 

>> A(B) % same as A( find(A > 5) ) 

ans = 

     7 

     8 

     6 

     9 

 
35

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Advanced: Logical indexing
>> A = [1 2 3; 4 5 6; 7 8 9] 

A = 

     1     2     3 

     4     5     6 

     7     8     9 

 

>> B = logical([0 1 0; 1 0 1; 0 0 1]) 

B = 

     0     1     0 

     1     0     1 

     0     0     1 

 

>> A(B) 

ans = 

     4 

     2 

     6 

     9 
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Logical indexing is also useful! 
>> A = [1 2 3; 4 5 6; 7 8 9] 

A = 

     1     2     3 

     4     5     6 

     7     8     9 

 

>> B = (A > 5) % true or false 

B = 

     0     0     0 

     0     0     1 

     1     1     1 

 

>> A(B) % same as A( A > 5 ) 

ans = 

     7 

     8 

     6 

     9 

 37
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Subscripting Examples
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More dimensions possible
>> rand(4,4,3) 

 

ans(:,:,1) = 

 

    0.7431    0.7060    0.0971    0.9502 

    0.3922    0.0318    0.8235    0.0344 

    0.6555    0.2769    0.6948    0.4387 

    0.1712    0.0462    0.3171    0.3816 

 

 

ans(:,:,2) = 

 

    0.7655    0.4456    0.2760    0.1190 

    0.7952    0.6463    0.6797    0.4984 

    0.1869    0.7094    0.6551    0.9597 

    0.4898    0.7547    0.1626    0.3404 

 

 

ans(:,:,3) = 

 

    0.5853    0.5060    0.5472    0.8407 

    0.2238    0.6991    0.1386    0.2543 

    0.7513    0.8909    0.1493    0.8143 

    0.2551    0.9593    0.2575    0.2435 

 

• The first index references array 
dimension 1, the row.

• The second index references 
dimension 2, the column.

• The third index references 
dimension 3, the page.

39

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Extending Matrices

• You can add extra elements to a matrix by creating them 
directly using ()

• Or by concatenating (appending) them using [ , ] or 
[ ; ]

• If you don’t assign array elements, MATLAB gives them 
a default value of 0

>> h = [12 11 14 19 18 17] 

h = 

   12   11   14   19   18   17 

 

>> h = [h 13] 

h = 

   12   11   14   19   18   17   13 

 

>> h(10) = 1 

h = 

   12   11   14   19   18   17   13    0    0    1 
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Example
>> a = [2 4 20] 

a = 

     2     4    20 

 

>> b = [9, -3, 6] 

b = 

     9    -3     6 

 

>> [a b] 

ans = 

     2     4    20     9    -3     6 

 

>> [a, b] 

ans = 

     2     4    20     9    -3     6 

 

>> [a; b] 

ans = 

     2     4    20 

     9    -3     6 

 41
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Functions on Arrays

• Standard MATLAB functions (sin, cos, exp, log, etc) can 
apply to vectors and matrices as well as scalars.

• They operate on array arguments to produce an array 
result the same size as the array argument x.

• These functions are said to be vectorized functions.
• In this example y is [sin(1), sin(2), sin(3)]
• So, when writing functions (later lectures) remember 

input might be a vector or matrix.

>> x = [1, 2, 3] 

x = 

     1     2     3 

 

>> y = sin(x) 

y = 

    0.8415    0.9093    0.1411 
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Exercise
>> x = linspace(0, 2*pi, 9) % OR x = linspace(0, 2*pi, 31) 

x = 

         0  0.7854  1.5708  2.3562  3.1416  3.9270  4.7124  5.4978  6.2832 

 

>> y = sin(x) 

y = 

         0  0.7071  1.0000  0.7071  0.0000 -0.7071 -1.0000 -0.7071 -0.0000 

 

>> plot(x,y) 
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Matrix vs. Array Arithmetic 

• Multiplying and dividing vectors and 
matrices is different than multiplying and 
dividing scalars (or arrays of scalars).

• This is why MATLAB has two types of 
arithmetic operators:
– Array operators: where the arrays operated on 

have the same size. The operation is done 
element-by-element (for all elements).

– Matrix operators: dedicated for matrices and 
vectors. Operations are done using the matrix as 
a whole.
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Matrix vs. Array Operators

Symbol Operation Symbol Operation 
+ Matrix addition + Array addition 
- Matrix subtraction - Array subtraction 
* Matrix multiplication .* Array multiplication 
/ Matrix division ./ Array division 
\ Left matrix division .\ Left array division 
^ Matrix power .^ Array power 
* idivide() allows integer division with rounding options 

45
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Matrix/Array Addition/Subtraction

• Matrices and arrays are 
treated the same when 
adding and subtracting.

• The two matrices should 
have identical size.

• Their sum or difference 
has the same size, and is 
obtained by adding or 
subtracting the 
corresponding elements. 

• Addition and subtraction 
are associative and 
commutative.
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More …

• A scalar value at  either side of the operator is 
expanded to an array of the same size as the 
other side of the operator.

47
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Array Multiplication

• Element-by-element 
multiplication.

• Only for arrays that 
are the same size.

• Use the .* operator 
not the * operator.

• Not the same as 
matrix multiplication.

• Useful in 
programming, but 
students make the 
mistake of using *
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Using Array Multiplication (Plot)

• Plot the 
following 
function:

• Notice the use 
of .* operator

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

>> t = 0:0.003:0.5; 

>> y = exp(-8*t).*sin(9.7*t+pi/2); 

>> plot(t,y) 
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Matrix Multiplication

• If A is an n × m
matrix and B is a 
m × p matrix, their 
matrix product AB 
is an n × p matrix, in 
which the m entries 
across the rows of A 
are multiplied with 
the m entries down 
the columns of B.

• In general, AB ≠ BA 
for matrices. Be 
extra careful.
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Matrix Multiplication

>> A = [6,-2;10,3;4,7]; 

>> B = [9,8;-5,12]; 

>> A*B 

ans = 

    64    24 

    75   116 

     1   116 
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Array Division

• Element-by-element 
division.

• Only for arrays that 
are the same size.

• Use the ./ operator 
not the / operator.

• Not the same as 
matrix division.

• Useful in 
programming, but 
students make the 
mistake of using /
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Matrix Division

• An n × n square 
matrix B is called 
invertible (also 
nonsingular) if 
there exists an 
n × n matrix B-1

such that their 
multiplication is 
the identity matrix.

�

�
= � �

−1 

� �
−1

= � 
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Matrix Division

>> A = [1 2 3; 3 2 1; 2 1 3]; 

>> B = [4 5 6; 6 5 4; 4 6 5]; 

>> A/B 

ans = 

    0.7000   -0.3000         0 

   -0.3000    0.7000    0.0000 

    1.2000    0.2000   -1.0000 

 

>> format rat 

>> A/B 

ans = 

     7/10        -3/10         0       

    -3/10         7/10         *       

     6/5          1/5         -1   
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Matrix Left Division

• Use the left division 
operator (\) (back slash) 
to solve sets of linear 
algebraic equations. 

• If A is n × n matrix and B 
is a column vector with n
elements, then x = A\B is 
the solution to the 
equation Ax = B.

• A warning message is 
displayed if A is badly 
scaled or nearly singular.
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Homework: Mesh Analysis
KVL @ mesh 2:

1(i2 − i1) + 2i2 + 3(i2 − i3) = 0
KVL @ supermesh 1/3:

−7 +1(i1 − i2) + 3(i3 − i2) + 1i3 = 0
@ current source:

7 = i1 − i3

Three equations:
−i1 + 6i2 − 3i3 = 0
i1 − 4i2 + 4i3 = 7
i1 − i3 = 7
Solution: 
i1 = 9A, i2 = 2.5A, i3 = 2A
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Just between us…

• Matrix division and matrix left division 
are related in MATLAB by the equation:

B/A = (A'\B')' % reversing

• To see the details, type: doc mldivide
or type: doc mrdivide
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Array Left Division

• The array left division 
A.\B (back slash) 
divides each entry of B 
by the corresponding 
entry of A. 

• Just like B./A
• A and B must be arrays 

of the same size. 
• A scalar value for either 

A or B is expanded to 
an array of the same 
size as the other.

>> A = [-4 5; 3 2]; 

>> B = [24 20; -9 4]; 

 

>> A.\B % notice the back slash 

ans = 

      -6              4        

      -3              2        

 

>> B./A 

ans = 

      -6              4        

      -3              2          
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Array Power
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Matrix Power

• A^k computes matrix 
power (exponent). 

• In other words,  it 
multiplies matrix A by 
itself k times.

• The exponent k requires 
a positive, real-valued 
integer value.

• Remember: this is 
repeated matrix
multiplication

>> A = [1 2; 3 4]; 

>> A^3 

ans = 

    37    54 

    81   118 

 

>> A*A*A 

ans = 

    37    54 

    81   118 
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Matrix Manipulation Functions

• diag: Diagonal matrices and diagonal of a 
matrix.

• det: Matrix determinant

• inv: Matrix inverse

• cond: Matrix condition number (for inverse)

• fliplr: Flip matrices left-right

• flipud: Flip matrices up and down

• repmat: Replicate and tile a matrix
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Matrix Manipulation Functions

• rot90: rotate matrix 90º

• tril: Lower triangular part of a matrix

• triu: Upper triangular part of a matrix

• cross: Vector cross product

• dot: Vector dot product

• eig: Evaluate eigenvalues and 
eigenvectors

• rank: Rank of matrix
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Exercise

63

>> fliplr(A)

ans =

3     2     1

6     5     4

9     8     7

>> flipud(A)

ans =

7     8     9

4     5     6

1     2     3

>> rot90(A)

ans =

3     6     9

2     5     8

1     4     7

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

1     2     3

4     5     6

7     8     9

>> diag(A)

ans =

1

5

9

>> det(A)

ans =

6.6613e-016
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Exercise

64

>> [V, D] = eig(A)

V =

-0.2320   -0.7858    0.4082

-0.5253   -0.0868   -0.8165

-0.8187    0.6123    0.4082

D =

16.1168         0         0

0   -1.1168         0

0         0   -0.0000

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

1     2     3

4     5     6

7     8     9

>> tril(A)

ans =

1     0     0

4     5     0

7     8     9

>> triu(A)

ans =

1     2     3

0     5     6

0     0     9
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Exercise

• Define matrix A of dimension 2 by 4 whose (i,j) entries 
are A(i,j) = i+j

• Extract two 2 by 2 matrices A1 and A2 out of matrix A. 

– A1 contains the first two columns of A 

– A2 contains the last two columns of A

• Compute matrix B to be the sum of A1 and A2

• Compute the eigenvalues and eigenvectors of B

• Solve the linear system B x = b, where b has all entries = 2

• Compute the determinant of B, inverse of B, and the 
condition number of B

• NOTE: Use only MATLAB native functions for all above.
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Solution
>> b = [2; 2] 

b = 

     2 

     2 

 

>> B\b 

ans = 

   -1.0000 

    1.0000 

 

>> det(B) 

ans = 

    -4 

 

>> inv(B) 

ans = 

   -1.5000    1.0000 

    1.0000   -0.5000 

 

>> cond(B) 

ans = 

   17.9443 

 

>> A =[0 1 2 3; 1 2 3 4] 

A = 

     0     1     2     3 

     1     2     3     4 

 

>> A1 = A(:,1:2) 

A1 = 

     0     1 

     1     2 

 

>> A2 = A(:,3:4) 

A2 = 

     2     3 

     3     4 

 

>> B = A1 + A2 

B = 

     2     4 

     4     6 
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Homework

• Solve as many problems from Chapter 1 
as you can

• Suggested problems:

• 1.3, 1.8, 1.15, 1.26, 1.30

• Solve as many problems from Chapter 2 
as you can

• Suggested problems:

• 2.3, 2.10, 2.13, 2.25, 2.26
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