
1/31/2015

1

Lecture 2: Variables, Vectors
and Matrices in MATLAB

Dr. Mohammed Hawa
Electrical Engineering Department

University of Jordan

EE201: Computer Applications. See Textbook Chapter 1 and Chapter 2.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Variables in MATLAB
• Just like other programming

languages, you can define
variables in which to store
values.

• All variables can by default
hold matrices with scalar or
complex numbers in them.

• You can define as many
variables as your PC memory
can hold.

• Values in variables can be
inspected, used and changed

• Variable names are case-
sensitive, and show up in the
Workspace.

>> A = 5

A =

 5

>> d = 7

d =

 7

>> LightSpeed = 3e8

LightSpeed =

 300000000

2

1/31/2015

2

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Variables

• You can change the
value in the variable by
over-writing it with a
new value

• Remember that variables
are case-sensitive (easy
to make a mistake)

• Always left-to right
>> variable = expression

>> a = 7

a =

 7

>> b = 12

b =

 12

>> b = 14

b =

 14

>> B = 88

B =

 88

>> c = a + b

c =

 21

>> c = a / b

c =

 0.5000

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

• Develop MATLAB
code to find Cylinder
volume and surface
area.

• Assume radius of 5 m
and height of 13 m.

� = ��
2
ℎ

� = 2��2 + 2��ℎ = 2���� + ℎ�

4

1/31/2015

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Solution

5

>> r = 5

r =

 5

>> h = 13

h =

 13

>> Volume = pi * r^2 * h

Volume =

 1.0210e+003

>> Area = 2 * pi * r * (r + h)

Area =

 565.4867

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Useful MATLAB commands

6

1/31/2015

4

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Vectors and Matrices (Arrays)

• So far we used MATLAB variables to
store a single value.

• We can also create MATLAB arrays that
hold multiple values
– List of values (1D array) called Vector

– Table of values (2D array) called Matrix

• Vectors and matrices are used
extensively when solving engineering
and science problems.

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Row Vector

• Row vectors are special cases of matrices.

• This is a 7-element row vector (1 × 7 matrix).

• Defined by enclosing numbers within square
brackets [] and separating them by , or a space.

>> C = [10, 11, 13, 12, 19, 16, 17]

C =

 10 11 13 12 19 16 17

>> C = [10 11 13 12 19 16 17]

C =

 10 11 13 12 19 16 17

8

1/31/2015

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Column Vector

• Column vectors are special cases of matrices.

• This is a 7-element column vector (7 × 1 matrix).

• Defined by enclosing numbers within [] and
separating them by semicolon ;

>> R = [10; 11; 13; 12; 19; 16; 17]

R =

 10

 11

 13

 12

 19

 16

 17

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix
• This is a 3 × 4-element matrix.
• It has 3 rows and 4 columns (dimension 3 × 4).
• Spaces or commas separate elements in different columns,

whereas semicolons separate elements in different rows.
• A dimension n × n matrix is called square matrix.

>> M = [1, 3, 2, 9; 6, 7, 8, 1; 7, 4, 6, 0]

M =

 1 3 2 9

 6 7 8 1

 7 4 6 0

>> M = [1 3 2 9; 6 7 8 1; 7 4 6 0]

M =

 1 3 2 9

 6 7 8 1

 7 4 6 0

10

1/31/2015

6

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Transpose of a Matrix

• The transpose operation interchanges the rows and
columns of a matrix.

• For an m × n matrix A the new matrix AT (read
“ A transpose”) is an n × m matrix.

• In MATLAB, the A’ command is used for transpose.

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

>> A = [1 2 3; 5 6 7]

A =

 1 2 3

 5 6 7

>> A'

ans =

 1 5

 2 6

 3 7

>> B = [5 6 7 8]

B =

 5 6 7 8

>> B'

ans =

 5

 6

 7

 8

• What happens to a row vector when transposed?

• What happens to a column vector when transposed?

12

1/31/2015

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Useful Functions
length(A) Returns either the number of elements of A if A

is a vector or the largest value of m or n if A is an
m × n matrix

size(A) Returns a row vector [m n] containing the
sizes of the m × n matrix A.

max(A) For vectors, returns the largest element in A.
For matrices, returns a row vector containing the
maximum element from each column.

If any of the elements are complex, max(A)
returns the elements that have the largest
magnitudes.

[v,k] = max(A) Similar to max(A) but stores the maximum
values in the row vector v and their indices in
the row vector k.

min(A)

and
[v,k] = min(A)

Like max but returns minimum values.

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

More Useful Functions

sort(A) Sorts each column of the array A in ascending
order and returns an array the same size as A.

sort(A,DIM,MODE) Sort with two optional parameters:
 DIM selects a dimension along which to sort.
 MODE is sort direction ('ascend' or 'descend').

sum(A) Sums the elements in each column of the array A
and returns a row vector containing the sums.

sum(A,DIM) Sums along the dimension DIM.

14

1/31/2015

8

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercises
>> M = [1 6 4; 3 7 2]

>> size(M)

>> length(M)

>> max(M)

>> [a,b] = max(M)

>> sort(M)

>> sort(M, 1, 'descend')

>> sum(M)

>> sum(M, 2)

>> X = [4 9 2 5]

X =

 4 9 2 5

>> length(X)

ans =

 4

>> size(X)

ans =

 1 4

>> min(X)

ans =

 2

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Solution
>> M = [1 6 4; 3 7 2]

M =

 1 6 4

 3 7 2

>> size(M)

ans =

 2 3

>> length(M)

ans =

 3

>> max(M)

ans =

 3 7 4

>> [a,b] = max(M)

a =

 3 7 4

b =

 2 2 1

>> sort(M)

ans =

 1 6 2

 3 7 4

>> sort(M, 1, 'descend')

ans =

 3 7 4

 1 6 2

>> sum(M)

ans =

 4 13 6

>> sum(M, 2)

ans =

 11

 12

16

1/31/2015

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The Variable Editor [from
Workspace or openvar('A')]

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Creating Big Matrices

• What if you want to create a Matrix that
contains 1000 element (or more)?

• Writing each element by hand is difficult,
time-consuming and error-prone.

• MATLAB allows simple ways to quickly
create matrices, such as:

• Using the colon : operator (very popular).

• Using linspace() and logspace()
functions (less popular, but useful).

18

1/31/2015

10

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Using the colon operator

• MATLAB command X = J:D:K creates vector
X = [J, J+D, ..., J+m*D] where m = fix((K-J)/D).

• In other words, it creates a vector X of values
starting at J, ending with K, and with spacing D.

• Notice that the last element is K if K - J is an
integer multiple of D. If not, the last value is less
than J.

• MATLAB command J:K is the same as J:1:K.
• Note:

– J:K is empty if J > K.
– J:D:K is empty if D == 0, if D > 0 and J > K, or if

D < 0 and J < K.

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example 1

>> x = 0:2:8

x =

 0 2 4 6 8

>> x = 0:2:7

x =

 0 2 4 6

>> x = 4:7

x =

 4 5 6 7

>> x = 7:2

x =

 Empty matrix: 1-by-0

20

1/31/2015

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example 2

>> x = 7:-1:2

x =

 7 6 5 4 3 2

>> x = 5:0.1:5.9

x =

 Columns 1 through 5

 5.0000 5.1000 5.2000 5.3000 5.4000

 Columns 6 through 10

 5.5000 5.6000 5.7000 5.8000 5.9000

>> y = 5:0.1:5.9; % what happened here?!

>>

>> % now create a ‘column’ vector from 1 to 10 using :

21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Alternatives to colon

• linspace command creates a linearly spaced row
vector, but instead you specify the number of
values rather than the increment.

• The syntax is linspace(x1,x2,n), where x1 and
x2 are the lower and upper limits and n is the
number of points.

• If n is omitted, the number of points defaults to 100.
• logspace command creates an array of

logarithmically spaced elements.
• Its syntax is logspace(a,b,n), where n is the

number of points between 10a and 10b.
• If n is omitted, the number of points defaults to 50.

22

1/31/2015

12

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

>> x = linspace(5,8,3)

x =

 5.0000 6.5000 8.0000

>> x = logspace(-1,1,4)

x =

 0.1000 0.4642 2.1544 10.0000

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Special: ones, zeros, rand
>> a = ones(2,4)

a =

 1 1 1 1

 1 1 1 1

>> b = zeros(4, 3) % null matrix

b =

 0 0 0

 0 0 0

 0 0 0

 0 0 0

>> c = rand(2, 4)

c =

 0.8147 0.1270 0.6324 0.2785

 0.9058 0.9134 0.0975 0.5469

% random values drawn from the standard

% uniform distribution on the open

% interval(0,1)

 24

1/31/2015

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Null and
Identity
Matrix

>> eye(4) % identity matrix

ans =

 1 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

 1 2 3

 4 5 6

 7 8 9

>> I = eye(3)

I =

 1 0 0

 0 1 0

 0 0 1

>> A*I

ans =

 1 2 3

 4 5 6

 7 8 9

 25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Determinant & Inverse

>> A = [1 2 3; 2 3 1; 3 2 1]

A =

 1 2 3

 2 3 1

 3 2 1

>> det(A) % determinant

ans =

 -12

>> inv(A) % inverse

ans =

 -0.0833 -0.3333 0.5833

 -0.0833 0.6667 -0.4167

 0.4167 -0.3333 0.0833

>> A^-1

ans =

 -0.0833 -0.3333 0.5833

 -0.0833 0.6667 -0.4167

 0.4167 -0.3333 0.0833

26

1/31/2015

14

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Accessing Matrix Elements

>> C = [10, 11, 13, 12, 19, 16, 17]

C =

 10 11 13 12 19 16 17

>> C(4)

ans =

 12

>> C(1,4)

ans =

 12

>> C(20)

??? Index exceeds matrix dimensions.

27

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Notes

• Use () not [] to access matrix elements.

• The row and column indices are NOT zero-
based, like in C/C++.

• The first is row number, followed by the
column number.

• For matrices and vectors, you can use one of
three indexing methods: matrix row and
column indexing; linear indexing; and logical
indexing.

• You can also use ranges (shown later).

28

1/31/2015

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Accessing Matrix Elements
>> M = [1, 3, 2, 9; 6, 7, 8, 1; 7, 4, 6, 0]

M =

 1 3 2 9

 6 7 8 1

 7 4 6 0

>> M(2, 3)

ans =

 8

>> M(3, 1)

ans =

 7

>> M(0, 1)

??? Subscript indices must either be real

positive integers or logicals.

>> M(9)

ans =

 6

 29

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Linear Indexing

30

1/31/2015

16

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Indexing: Sub-matrix

• v(2:5) represents the second through fifth elements
– i.e., v(2), v(3), v(4), v(5).

• v(2:end) represents the second till last element of v.
• v(:) represents all the row or column elements of vector v.

• A(:,3) denotes all elements in the third column of matrix A.
• A(:,2:5) denotes all elements in the second through fifth

columns of A.
• A(2:3,1:3) denotes all elements in the second and third

rows that are also in the first through third columns.
• A(end,:) all elements of the last row in A.
• A(:,end) all elements of the last column in A.
• v = A(:) creates a vector v consisting of all the columns of A

stacked from first to last.

31

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise
>> v = 10:10:70

v =

 10 20 30 40 50 60 70

>> v(2:5)

ans =

 20 30 40 50

>> v(2:end)

ans =

 20 30 40 50 60 70

>> v(:)

ans =

 10

 20

 30

 40

 50

 60

 70

32

1/31/2015

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise
>> A = [4 10 1 6 2; 8 1.2 9 4 25; 7.2 5 7 1

11; 0 0.5 4 5 56; 23 83 13 0 10]

A =

 4.0000 10.0000 1.0000 6.0000 2.0000

 8.0000 1.2000 9.0000 4.0000 25.0000

 7.2000 5.0000 7.0000 1.0000 11.0000

 0 0.5000 4.0000 5.0000 56.0000

 23.0000 83.0000 13.0000 0 0.0000

>> A(:,3)

ans =

 1

 9

 7

 4

 13

>> A(:,2:5)

ans =

 10.0000 1.0000 6.0000 2.0000

 1.2000 9.0000 4.0000 25.0000

 5.0000 7.0000 1.0000 11.0000

 0.5000 4.0000 5.0000 56.0000

 83.0000 13.0000 0 10.0000

>> A(2:3,1:3)

ans =

 8.0000 1.2000 9.0000

 7.2000 5.0000 7.0000

>> A(end,:)

ans =

 23 83 13 0 10

>> A(:,end)

ans =

 2

 25

 11

 56

 10

>> v = A(:)

v =

 4.0000

 8.0000

 7.2000

 0

 23.0000

 10.0000

 1.2000

 5.0000

 0.5000

 83.0000

 1.0000

 9.0000

 7.0000

 4.0000

 13.0000

 6.0000

 4.0000

 1.0000

 5.0000

 0

 2.0000

 25.0000

 11.0000

 56.0000

 10.0000

 33

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Linear indexing: Advanced

>> A = 5:5:50

A =

 5 10 15 20 25 30 35 40 45 50

>> A([1 3 6 10])

ans =

 5 15 30 50

>> A([1 3 6 10]')

ans =

 5 15 30 50

>> A([1 3 6; 7 9 10])

ans =

 5 15 30

 35 45 50

% indexing into a vector with a nonvector,

the shape of the indices is honored

34

1/31/2015

18

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Linear indexing is useful: find
>> A = [1 2 3; 4 5 6; 7 8 9]

A =

 1 2 3

 4 5 6

 7 8 9

>> B = find(A > 5) % returns linear index

B =

 3

 6

 8

 9

>> A(B) % same as A(find(A > 5))

ans =

 7

 8

 6

 9

35

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Advanced: Logical indexing
>> A = [1 2 3; 4 5 6; 7 8 9]

A =

 1 2 3

 4 5 6

 7 8 9

>> B = logical([0 1 0; 1 0 1; 0 0 1])

B =

 0 1 0

 1 0 1

 0 0 1

>> A(B)

ans =

 4

 2

 6

 9

36

1/31/2015

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Logical indexing is also useful!
>> A = [1 2 3; 4 5 6; 7 8 9]

A =

 1 2 3

 4 5 6

 7 8 9

>> B = (A > 5) % true or false

B =

 0 0 0

 0 0 1

 1 1 1

>> A(B) % same as A(A > 5)

ans =

 7

 8

 6

 9

 37

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Subscripting Examples

38

1/31/2015

20

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

More dimensions possible
>> rand(4,4,3)

ans(:,:,1) =

 0.7431 0.7060 0.0971 0.9502

 0.3922 0.0318 0.8235 0.0344

 0.6555 0.2769 0.6948 0.4387

 0.1712 0.0462 0.3171 0.3816

ans(:,:,2) =

 0.7655 0.4456 0.2760 0.1190

 0.7952 0.6463 0.6797 0.4984

 0.1869 0.7094 0.6551 0.9597

 0.4898 0.7547 0.1626 0.3404

ans(:,:,3) =

 0.5853 0.5060 0.5472 0.8407

 0.2238 0.6991 0.1386 0.2543

 0.7513 0.8909 0.1493 0.8143

 0.2551 0.9593 0.2575 0.2435

• The first index references array
dimension 1, the row.

• The second index references
dimension 2, the column.

• The third index references
dimension 3, the page.

39

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Extending Matrices

• You can add extra elements to a matrix by creating them
directly using ()

• Or by concatenating (appending) them using [,] or
[;]

• If you don’t assign array elements, MATLAB gives them
a default value of 0

>> h = [12 11 14 19 18 17]

h =

 12 11 14 19 18 17

>> h = [h 13]

h =

 12 11 14 19 18 17 13

>> h(10) = 1

h =

 12 11 14 19 18 17 13 0 0 1

40

1/31/2015

21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example
>> a = [2 4 20]

a =

 2 4 20

>> b = [9, -3, 6]

b =

 9 -3 6

>> [a b]

ans =

 2 4 20 9 -3 6

>> [a, b]

ans =

 2 4 20 9 -3 6

>> [a; b]

ans =

 2 4 20

 9 -3 6

 41

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Functions on Arrays

• Standard MATLAB functions (sin, cos, exp, log, etc) can
apply to vectors and matrices as well as scalars.

• They operate on array arguments to produce an array
result the same size as the array argument x.

• These functions are said to be vectorized functions.
• In this example y is [sin(1), sin(2), sin(3)]
• So, when writing functions (later lectures) remember

input might be a vector or matrix.

>> x = [1, 2, 3]

x =

 1 2 3

>> y = sin(x)

y =

 0.8415 0.9093 0.1411

42

1/31/2015

22

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise
>> x = linspace(0, 2*pi, 9) % OR x = linspace(0, 2*pi, 31)

x =

 0 0.7854 1.5708 2.3562 3.1416 3.9270 4.7124 5.4978 6.2832

>> y = sin(x)

y =

 0 0.7071 1.0000 0.7071 0.0000 -0.7071 -1.0000 -0.7071 -0.0000

>> plot(x,y)

43

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix vs. Array Arithmetic

• Multiplying and dividing vectors and
matrices is different than multiplying and
dividing scalars (or arrays of scalars).

• This is why MATLAB has two types of
arithmetic operators:
– Array operators: where the arrays operated on

have the same size. The operation is done
element-by-element (for all elements).

– Matrix operators: dedicated for matrices and
vectors. Operations are done using the matrix as
a whole.

44

1/31/2015

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix vs. Array Operators

Symbol Operation Symbol Operation
+ Matrix addition + Array addition
- Matrix subtraction - Array subtraction
* Matrix multiplication .* Array multiplication
/ Matrix division ./ Array division
\ Left matrix division .\ Left array division
^ Matrix power .^ Array power
* idivide() allows integer division with rounding options

45

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix/Array Addition/Subtraction

• Matrices and arrays are
treated the same when
adding and subtracting.

• The two matrices should
have identical size.

• Their sum or difference
has the same size, and is
obtained by adding or
subtracting the
corresponding elements.

• Addition and subtraction
are associative and
commutative.

46

1/31/2015

24

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

More …

• A scalar value at either side of the operator is
expanded to an array of the same size as the
other side of the operator.

47

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Array Multiplication

• Element-by-element
multiplication.

• Only for arrays that
are the same size.

• Use the .* operator
not the * operator.

• Not the same as
matrix multiplication.

• Useful in
programming, but
students make the
mistake of using *

48

1/31/2015

25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Using Array Multiplication (Plot)

• Plot the
following
function:

• Notice the use
of .* operator

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

>> t = 0:0.003:0.5;

>> y = exp(-8*t).*sin(9.7*t+pi/2);

>> plot(t,y)

49

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Multiplication

• If A is an n × m
matrix and B is a
m × p matrix, their
matrix product AB
is an n × p matrix, in
which the m entries
across the rows of A
are multiplied with
the m entries down
the columns of B.

• In general, AB ≠ BA
for matrices. Be
extra careful.

50

1/31/2015

26

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Multiplication

>> A = [6,-2;10,3;4,7];

>> B = [9,8;-5,12];

>> A*B

ans =

 64 24

 75 116

 1 116

51

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Array Division

• Element-by-element
division.

• Only for arrays that
are the same size.

• Use the ./ operator
not the / operator.

• Not the same as
matrix division.

• Useful in
programming, but
students make the
mistake of using /

52

1/31/2015

27

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Division

• An n × n square
matrix B is called
invertible (also
nonsingular) if
there exists an
n × n matrix B-1

such that their
multiplication is
the identity matrix.

�

�
= � �

−1

� �
−1

= �

53

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Division

>> A = [1 2 3; 3 2 1; 2 1 3];

>> B = [4 5 6; 6 5 4; 4 6 5];

>> A/B

ans =

 0.7000 -0.3000 0

 -0.3000 0.7000 0.0000

 1.2000 0.2000 -1.0000

>> format rat

>> A/B

ans =

 7/10 -3/10 0

 -3/10 7/10 *

 6/5 1/5 -1

54

1/31/2015

28

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Left Division

• Use the left division
operator (\) (back slash)
to solve sets of linear
algebraic equations.

• If A is n × n matrix and B
is a column vector with n
elements, then x = A\B is
the solution to the
equation Ax = B.

• A warning message is
displayed if A is badly
scaled or nearly singular.

55

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework: Mesh Analysis
KVL @ mesh 2:

1(i2 − i1) + 2i2 + 3(i2 − i3) = 0
KVL @ supermesh 1/3:

−7 +1(i1 − i2) + 3(i3 − i2) + 1i3 = 0
@ current source:

7 = i1 − i3

Three equations:
−i1 + 6i2 − 3i3 = 0
i1 − 4i2 + 4i3 = 7
i1 − i3 = 7
Solution:
i1 = 9A, i2 = 2.5A, i3 = 2A

56

1/31/2015

29

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Just between us…

• Matrix division and matrix left division
are related in MATLAB by the equation:

B/A = (A'\B')' % reversing

• To see the details, type: doc mldivide
or type: doc mrdivide

57

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Array Left Division

• The array left division
A.\B (back slash)
divides each entry of B
by the corresponding
entry of A.

• Just like B./A
• A and B must be arrays

of the same size.
• A scalar value for either

A or B is expanded to
an array of the same
size as the other.

>> A = [-4 5; 3 2];

>> B = [24 20; -9 4];

>> A.\B % notice the back slash

ans =

 -6 4

 -3 2

>> B./A

ans =

 -6 4

 -3 2

58

1/31/2015

30

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Array Power

59

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Power

• A^k computes matrix
power (exponent).

• In other words, it
multiplies matrix A by
itself k times.

• The exponent k requires
a positive, real-valued
integer value.

• Remember: this is
repeated matrix
multiplication

>> A = [1 2; 3 4];

>> A^3

ans =

 37 54

 81 118

>> A*A*A

ans =

 37 54

 81 118

60

1/31/2015

31

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Manipulation Functions

• diag: Diagonal matrices and diagonal of a
matrix.

• det: Matrix determinant

• inv: Matrix inverse

• cond: Matrix condition number (for inverse)

• fliplr: Flip matrices left-right

• flipud: Flip matrices up and down

• repmat: Replicate and tile a matrix

61

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Matrix Manipulation Functions

• rot90: rotate matrix 90º

• tril: Lower triangular part of a matrix

• triu: Upper triangular part of a matrix

• cross: Vector cross product

• dot: Vector dot product

• eig: Evaluate eigenvalues and
eigenvectors

• rank: Rank of matrix

62

1/31/2015

32

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

63

>> fliplr(A)

ans =

3 2 1

6 5 4

9 8 7

>> flipud(A)

ans =

7 8 9

4 5 6

1 2 3

>> rot90(A)

ans =

3 6 9

2 5 8

1 4 7

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

>> diag(A)

ans =

1

5

9

>> det(A)

ans =

6.6613e-016

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

64

>> [V, D] = eig(A)

V =

-0.2320 -0.7858 0.4082

-0.5253 -0.0868 -0.8165

-0.8187 0.6123 0.4082

D =

16.1168 0 0

0 -1.1168 0

0 0 -0.0000

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

>> tril(A)

ans =

1 0 0

4 5 0

7 8 9

>> triu(A)

ans =

1 2 3

0 5 6

0 0 9

1/31/2015

33

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

• Define matrix A of dimension 2 by 4 whose (i,j) entries
are A(i,j) = i+j

• Extract two 2 by 2 matrices A1 and A2 out of matrix A.

– A1 contains the first two columns of A

– A2 contains the last two columns of A

• Compute matrix B to be the sum of A1 and A2

• Compute the eigenvalues and eigenvectors of B

• Solve the linear system B x = b, where b has all entries = 2

• Compute the determinant of B, inverse of B, and the
condition number of B

• NOTE: Use only MATLAB native functions for all above.

65

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Solution
>> b = [2; 2]

b =

 2

 2

>> B\b

ans =

 -1.0000

 1.0000

>> det(B)

ans =

 -4

>> inv(B)

ans =

 -1.5000 1.0000

 1.0000 -0.5000

>> cond(B)

ans =

 17.9443

>> A =[0 1 2 3; 1 2 3 4]

A =

 0 1 2 3

 1 2 3 4

>> A1 = A(:,1:2)

A1 =

 0 1

 1 2

>> A2 = A(:,3:4)

A2 =

 2 3

 3 4

>> B = A1 + A2

B =

 2 4

 4 6

66

1/31/2015

34

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

• Solve as many problems from Chapter 1
as you can

• Suggested problems:

• 1.3, 1.8, 1.15, 1.26, 1.30

• Solve as many problems from Chapter 2
as you can

• Suggested problems:

• 2.3, 2.10, 2.13, 2.25, 2.26

67

